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“Seai-Stationar~ Clearing Processes”

Irrata:
n—i n—i

p . 1, 1. 9b: r.place ” Z  Q~15 ” by “ t
k-0 k-0

p. 2, 1. ib: insert “it” b tvsen “is” and “tres”

p. 4, 1. 14: should read: “I Cr1 + u), ...  X (t,~ + u)”

p. 6, 1. 10: Replace “I ” by “B~” ; 1. 11: “...F (A.~ + T~~ +

p. 7, 1. 6b: Replace “
~~~—~ °c—~” by 

~~~~~

p . S , 1. 1:

j  p . 9 , 1. 9: abould rsad:

} p.10, 1. 6: Replace “t ’Tfl( t)” by “t 1TN(t) ”

p.11, 1. 1: Replace ‘Th ua3~4” by “Theorem 3.5”

1. 4; i.p1 e ”p ( W0 > u)” by “P (W0 > u)”

p.12, 1. 7b: should rsad: “T A + t , a$) Y(
~. etW)”

p 13, 1. 2: Replace “ET(l)” by “$T(l)”

-~ 

‘
~ p.16 , 1. Ib: laplace 4 ~~~~~~~“ by ~~ (n)1.

p.17 , 1.2—3: laplace ‘4 ~~~~~~~~~~ by “
~~

and “T” by “T” .

Delete “by the continuity ... y~~~ £ T.”



A clearing process describe. th. net quantity in a s rvice

• system (e.g. a batch service qusus or dan) which receives en

esogsnous r dos input ~~~r tins, sod ha. am output asobsaiss that

intsxmitteatl~ clears random qu titi. s from the system. A .e.i -
• stationary clearing proces. i. strictly stationary over its random

- clearing epochs. We ds.cribs the aay~~totic distributions of such

- S 
processes d show bow they arise is limits of certain functional.

-
• 

of these processes. Vs identify sea clearing processes with usA-

- S - for. asynprotic distributions. This is trus for aodulo c clear ing

with a stationary input if the Pain probability is used rather than

the usual probability Vs also present a tanctional central limit

law and 1_ of  the iterated logorithe for clearing processes, ..

vail as a result on the ~osivergr’r~, of a sequence of such process...

!!L.~~~~.L $.rvics syst , semi—stationary process.., uniform

a.yeptotic diatributlons, Palm probabilitiss, functional limit lana.
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~• J ~~~

M y  stochastic leput-luSput syst~~~, swab a. batch service qusass,

dian, i~~~~torMs. ~~~ stsr file,, dns d-r .~~ ssivs yste , and quality

control systems, can be modeled s a clearing process, which em define -as

fali . A spat.. receives sn input - over tins aecording to a aoodecreasin$

coss~~~ ns”t~~~ stochastic press.. T a~ Ci(s): t 
~~, 

•} such tbst T(t) is the

c~~~&ativa -~~~~~~~~~~~~~ ep t .  t~~~ t end  T(t)..t as .  Read.. queatit ie %!, Q1’,... are cl, rW f~~~~ tha systes.t pecks ~~~~~~~~~~~~ wh en ~~~~~~ S.C.,

by the following rule. Af ter the n-th clearing at tins T5 C!~° 
0), the

qunstity in : system .se letes for a tins A~ 
emtil it reaches a r andom

n—i
i.e. £~~~ inf (u~~~0: Y (T+u)

if tar a random (service or processing) U.S I~, i.e. at ibs iposh 
~~~

Tm + £~ +$ ~, a ~~~stity ç: 1. cleared from the spetea, char s 0 Q~’ ~~~
The ~~~~~~~~~~ is Sb. syUe.~oweZ sims ii described by - ; .

5(e) e T(t) .
~~~~

$ , S r T
t~~~~

t 5
~+i 

- 
-~~~~~~ 
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The it-tit cycle of I, during the time interval [Ta. T~~1) i. described by

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.0, for u~~V~
Where V5 - T

~~l~ T~. We call I a clearing process. When 
~d
• • c

and 0 a.s. for all it ~ 0, v call I a modulo c clearing proces s.

In such a process, every U.s the net quantity in the system reaches the

level c, c units of quantity are instantaneously removed.

We shall ass~~~ throughout this articl , that (Xe) is a strictl y

stationary sequen ce of random .1. nts (I is stationary over its cycles) .

That S., the distribution of \+a  ~~~~~~~~~~~~~~ \ + l~ 
ii independent

of h for amy wq~~sga5t~s reals -t1,.,- ., tk 4S -inte$sra ~~~~~~~~~~~ a
~ 

and it.

ml, is equivalint (Prspe itlcs -211) to X being semi—stationary o’er T (llJ.

Clearing proceeass vtth Q5 — c, 0, Z(T~) — 0 -Ct... , %~ 
— T 

~~n+i~ 
-

and with Ii,, Ii,•. .  independent and identically distributed Ci..., I

ii a fegla.rattve process) are se.diad in (131 and (141. In particular,

their - asynptotie b.havto* and opti.Sl cieiitng leVels are investigated.

Poe. ibis applications of the clearing.proc.ss modal are discues d at

length in (14). -

In this article - (Section 3) va describe - the aeynptotic distr ibut ion p

of I, Which i~ defined b7 -- -~~~~ 
S 

• 
-

p ($) • ii. t~~~ I~ (I(n)) d* &.sa - 5.fo 
~~~~~~ S~!

• Wh*r. 1(.) is the ladleltor fanctiOn of the Sorel set $ in I, she real

iuwhens. We then Show-how p iris..- Ia limits of fimttioea4a .

t 1/ f5 (X(u))du. In Section 4 em idestify sua  nodule c clearing

pro cesses whose asynptotic distributions are uniform. Our sin her. (which
5 - , ’ - •

*~4~• • b ~s
is What .mosivated this study) is to provide sons insight into the .iv enly

• - 5
- I-~~

that only for a l1 sabclass of input processes with stationary isciessat s
• H - • - r - -

is tru. that p is irniform. Is particular, em chow that if the inverse of 
1~~~~r~

2

4 -~~ S —-5 — -



Y has stationary increamtts,’ thsn p is  unUorm. A corollary to this is that

if Y has stationary ‘ncremai ts and the a s .  Unit defining p is taken with

rsspeat to the P.1* probability of Y ((3), [3) and (101), rather than the

usual probability , then p is indeed uniform. These results supplement the

basic results in 181 end the rsfarancee therein on the sub~ject of identifying

processes that l ove ~~iform asymptotic distributions. In our final Section 5,

em present a functional central limit law and a funCtional law - of the iterated

logarithe for I, as well. as a result on the convergence of a sequence of

clearing process...

- - . •
• S~- 5 , - ~5 -~~ ‘ 5
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2. The Stationari ty Aast~~ticn

In this section we introduc , more notation end di.c~s* scan conse-

quences of our assumption that (x5} is stationary. W begin by definliig

semi—stationary processes.

Let I — (1(e) : t ~ 0) be a stochastic process with sampl. path.

in D • D(C,.), the set of functions from — (O,c’~ to R that are right

continuous and have loft-hand limits. Vs associate with D the smallest 5-
a—field that —fre~ the projection mappings * + z(t) from D to a asasurabl.

for each t c L .  This is the same as the Borel a-field ganeratsd by Skoroho4’.

~~ 
topology, see [2) and (1). We let denote the translation operator on D

defined by e5 z (ii) x(t+u) for each u. The operator $~ is measurable since

* ~ 
x (u) is measurabi. for each u.

The process I 1. called strictly stationary if the distribution of

‘ u)ie independent of u for all tl,...,Cb. That is, if

e
~x and I are equal in distribution for each u. (Rer.aft.r we *se “5CC—

tionary” to mean “strictly statio nary . ’)

The process I is called semi-stationary over T — (..~~ . it ~ 0), a

random sequenc. with T0 . 0 and V5 - T~~1 - T5 ~ 0 a s . ,  if the distribution

of 1(t1 + 
~~~~~~~~~~~~ + T

%
~~)) v514~,..., V~~th

is independent of h for any e1,...,t,, in and integers 5l~~”’5k and

it in These and other types of s i-stationary processes are discussed

in (11). Similar to Theorem 2.2 in Lii), the following are equivalent

state ments :

(i) I i~ a semi-stationary proc ess over T.

(ii) ((es I,W5) : it ~ 0) is a stationary sequence (of random sl~~~~ts of

D x  I).

(iii) ((X5,W5) : it ~ 0) ia stationery sequence, where X5(t) . I(T5+t)

for t in (T5,T~~1), and Z~(t) 0 lsswhere
.4



(iv) For any f : D + & the process X’(t) — f(e~X) t £ R~, ~~ semi—

4, stati onary over T.

We shal l f requently use,vithout mention, the well-bz.ov fact that

(1) is equivalent to (iv) for stationary processes . Thi , by the way , is

the key to proving the above equivalences. Note that a semi—stati onary

process X aver T in which { (~~,w~) :n ~~, 
0) are independent and identically

distr ibuted , is a regenerative process with regeneration t imes T0.

For the remainder of this arti cle we assim~e that X is a clearing

proce ss a. describ ed in Section 1 with clearing -levels àlsatin g quantities

and clearing times T . OUr aaeuuptien that tho cyciss ( X )  are stat ion -

ary baa the following characterization .

Pro position 2 • 1. The sequence (x~
} is stat ionar y if and only if X is semi—

stat ionary over T. - 
-

Proof. For each it ~ 0 we can write

V . 0 if X (.) u’ O S

it it

• inf (u 0 : X (u) — 0) otherwise.

That is — f(X ) where f is a measurable function from U to R+.

Consequent ly , if (Xe) is stationary, then ((Xe ~I~) } is stationary nd so

I is semi~.tattonar~ over T. The converse assertion is obvious .

Mote that the stationar ity of (X0) implies that W~~A~ + -(a ~ 0) is

a stat iona ry sequence , and that Y(0) and X(Ta) have the same distri bution

for each a. We shall continue this discussion after we define semi—sta-

tione ry vmedee asaeuras. -

Let Li denote the set of positive measures on R~ that are finite on

c~~~act sets (i.e. Radon measures). For ~i c H we write uA or pt~~ as the

~-asasure of k i n  B~, the Borel ant s-of &~, ~~~ we let . i ( t) — p(0 ,t) for

t c &~ denote thi ci~~ letivs distribution function (c.d.f.) of u. Note

that sa (.)  a- D. We associate with H the - smallest a field that males the

3 -
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mappings ii ~A for A t measurable • This is the s~~~ as the Borel

a—field generated by the vague topology on H , [ljand [6) . As above, we
S let denote the translation operator on 1.1 def ined by e

~
u(A) — ~(A + t)

for A £ and t c R~ . A random measure ~ on is defined to be a measurable

function from a probability apace to H. If ~A is an integer a s .  for each

A C4, then F~ is a point process. Some basics of random measure s are

discussed in [6] . S

Let ~ be a rand om measure on R+. The ~ is called staticnary if the

distrib ut ion of ~ (A1+t}, . . . ,  ~ (A.~+t) is independent of t for all A1, . . . ,

in B4 and t c R~. The ~ is called semi—stationar y over T — (T
a) if the

distribution of ~~~~~~~~~~~~~ F~(A +T ~~~), W 44~~• • ~Wfl~4~ is independent

of h for each A,~,...,Ak in8+ and integers 51’~’•’
5k and h.

Similar to the above, one can easily show that the following statements

are equivalent:

(i) ( is a semi—stationar y measure over 1’.

(ii) ( eT~~,W )  : it ~ 0) is a stationary sequence.

(iii) {(ç~,W )  : n >  0)-i. a stationary sequence, where

— ~((k4~r~} (~ iT~~T~,i)) for A c 8+.

Another important concept vs use is that of an - inverse of a measure .

Let Li , — (ucLi : UR+ — .), which is in H. We define the inverse of ~cM_ to be

the measure P whose c d.f .  is

11(t) — thf {e ~ 0 : u(s) > t} for t c

The mappin g u • P from N , to N,, is measurable. This follows since for

each a and t in the set

(peN,, :11(t) c a) • (paM , : p(a—) ‘ t}

Lsemsasurable set in H,,, which means that p ~ 11(t) is measurable for each t.

We now show how the stationarity of the cycles (X5) of I is related

to the structure of the input process Y. To this end vs shal l view Y as a

6

_-. 
_____________________________________



c.d.t. of a rendcm measure which we also denote by Y. Nott that Y is also

a random measure since the inverse mapping is measurable.

Proposition 2.2. If (X ,% ’} is stationary , t~~~ T is a s~~~—ststionary

measure over Ta (n ~ 1). and T is a semi-stationary asurs over 
- 

-

T —  v1O.-T~)~(n ~ 1)
Proof. For each a ~ 0, let

Y~(t) - TtT~. T~4tJ £Or O~~~t C W  S

• T(T~. T~~1) for t

Note that Y~(.) — 0 if W0 — 0. By the definitio n of we hews for

o ~ t
Y~(t) Z~(t): + S~ - T[0, ;)‘

- 1(t) - X~ ,1(W~~~) +

and

Y~(t) - - Xn_iOIn_i) + for t ~ W~.

In prov ing Proposition 2.1 vs showed that is a measurable function of

It then follows that T~ is a ~~~~urab1e function of (~~ ,X~~1,Q1~~1} for each

n~~, 1.

Consequently, if (Z
n. ~~

) is stationary them 
~
Tn’ W~) (a ~ 1) is

stationary, and by the above c o u ~ts , this is equivalent to Y being s~-

stationary over T
0 

(it ~ 1).

To prove the second assertion first note that for a ~ 1, T* .
- S . -~~ -

X
~.i
(v
~ i) +S~~~

, and so

New let
- - -

~
- ,

Y ( t ) . T ( T * , T + t J for 0~~~t w

-Y f T ,T~~1) for t ?,,V. 
- 

S

For We O end 0 ~~ , t c We it follows by the properti.s of inverses thata a

- S .- \ A -  - 

~~ (
~ ~~~~

7 .  -

S - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ S - - S ~~~~~~~~~~~~~~~~~~~~~~~~~ -
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T~(t )— T + t Y [).1

- in! (u: T(u) > - T + t ) — T ~
• tnf (u: Y(Tnd u ) > T + t )
• in! (u: X~(u) ~ ~~~~~~~~ — + t}

Thus, T~1 end - W at. uursbls functions of (I~~l, Z~, Q~ 1) for each

n ~~, 1. The arg uesat for the firs t assertion new appli es to yield the

second assertion. -

Proposition 2.3. The (Xe. Q~
) is stationary if either Ci) Y is a semi—

stationary measure over T~ (it ~ 0) with Y(0) • 0 and — Y(T~,T~~l1 for

each a ~ 0, or (ii) Y is a s~~~-etationary measure over ~~ (a ~ 0) and— and — 0 for a ~ 0.

Proof. This proof is similar to that for Proposition 2.2. I~ien (i) holds

use the representation -

Z~(t )— T (T ,T + t) for 0~~~t W ~.

And when (ii) holds use - Y (0 , Sn) and the representation

x~
(t)- . TC!~4t) - 5

n in! - (~s !(n) • T~+~t} — S~

— in! (v: T tS~ , S +w] ‘
for 0 ~ t a W ~ — ~ 15~’ 3n+1~~

3. A ywtotlc Distribut ions

In this section we describe the asymptotic distribution of the clearing

process I, and then show how it arises in limits of certain functiocals of 1.

~~~~~~~~~ Suppose (X
~

} is so ergodic atationary sequence and ~~~~~~ Let

p(0,zj — I mm (T(z) , W0}/1 W0 for x £ 
~~~~ 

S

S Let f be a lorel function from I to ~ such that

(3.1) 1 sup (~I f ( T(u) du(: 0 ~ t a ii~) c ..

Them as t~~~~,

(3.2) t
]

ftf~Z(u)du . 11f(z)dp(z) a s .
- ~~~~, — - S

end

(3.3) t~~il~(X(is))du . p(I) s.. for each I c  8 ,.

- - - - -  
-S



P.-

S Remarks 3.2. The above assertions hold if (xe) is nOt ergodic. In this
case, the ezpsctations in the definition of p are conditional ezp.ctations

conditioned on the invariant a—field of (Z~}.

Remark 34~~ Note that for endulo c clearing pro cesses

p(0 ,z) — I Y(z) / i T  (O c) for 0 ~~z C c.

Proof. Under the hypotheses, it follows by the ergodic theor em for sta-

tionary sequence s that
—l ~~~~~ 

T~4~1 ‘

T I f(1 (u))du — a I I ,, f(Z (u))du / (a 1~ ~- k—O k • ft - -

+ f(Y ‘u))du/~ I0 a s ,  as a ~~~e. 
S

Using the change - of variablS - formals- for integrals , we have - S

‘Jo
~ 

f (I  (u))du — I f(Y (u)) I f 1(u)du • If(z)d~(x),10,
where -

~(o,x]•A(0~~ u~~ W0:Y(u)~~~x} 
-

• sup (0 ~~u ~~~~ T(s) • sin (T(z) , U0),

and A is the Lsbesque measu re. Tak ing the enpectaeion of the latter integral ,

we then have --
T

S T 1 10
11f(Iju))du + t~~t(m)dp(z) •.~~. as n 

~
In ~~~ of this end (3.1) , an application of Corollary 5.1 of (12] ytolds

(3.2). The assertion (3.3) 5 is * special cue of (3.2) 1. which (3.1) is

utisti.4 siacs - - ~ S --

I I ~ (X(u) )du ~ for o ~ t

~~~~~~~ ~~~ P051 (Is) is an ergodit sequence and El0 a .. Let

$ 
~~~~~~~ 

be Ior.l functions from I t o  1 puch that 1
~e~’~

1 ~~s(x) where

$ satisft.s (3.l)~ . a.d f
~
Ls)

~ 
f (z) for .p — s...z. , Then

(3 4) - t ~
1 

6
~ ft iz(u))de +. It (z) dp ®. a... a t 

~~~~-?~~ 

S

- 

-

t4 ,t ~~~~ - *(~i))du. -
+ t 1t~~~ ç(z(u))du1 - A-;4

where $(t) -sup(n s T~~~~t). Usisgacbs.gsof variable (as we did Sn

• 
: S

•

~~~r• ~~~~~~~~~~~~~~~ 
- - ~~SS ~ S~~ S& : ? 5 .  - ~~~~~~~~~~~~ t St. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * - - ~~~ -
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S 
last proof) , the fir st integral can be written as

(3. 3) t 1TI(t) ~1I(t) 

~~~~
where

I — T 4 $~ I~ (X(u))du .n a 0 5 
-

It is well—known that n4T~ “ El0 a.s. laplies t~~N(t) ~ El0
’ a s.,

so that t 1Tn(t) • 1 as. By Theorem 3.1 vs have ciCt)’ . pCI) as. for

each I t  and (3.2) holds for g. Thus it follows by th. generalized

dominated convergenc, theorem in (9, p. 2303 that the integral in (3.5)

converges as. to I f(z)dp(a). Now the assertion (3.4) will follow upon

showing that -

(3.6) t 1 I~ I (1(v))du • 0 as. as t ‘-a .t
To see th is let -

— sup (4 g (I(u))du : t a (Ta , T~~1)}.
S 

~~~ 
TMn is a stationary sequsne. asd oot ass~eq tion (3.1) says E5 C • .

By the ergodic theorem, n~~X~ . 0 a... Then (3.6) follows since - S

t~
1
~ 
!1(t) 

~~~, 
(t’’Et ) )CR ( t)

”
Ng(t) ) + 0 as .

This completes the proof . - - - -• -

The above result., as veil as those in Section 5, hold for amy semi—

stattonary process that ar ises in conjunction with 1. For ~~ap 1s the

pro cesses S

S 

U(t) — — ‘acts and V(t) • ~~~~~ 1 
— 

- -

where 1(t) • .up ~~~~~ , 
‘ T~ £ t), ate each s~~~-statiaest y processes over

sines (Vs) is stationary. -- The U(t)aed V(t) rapreslet the tines sinc. the

last clearing before t, end the ctnO - to the sent cl.sris$ elsa t , u.psct-

ivsly. 54—liar to Theorem 3.1, we have the following result, which is a

~~~ raI4u ttfl 905 a im1l4~~.e reuu3t fot ~i:=~~j  p ot .  ~ -
~

i
S
~

- - 
• 

~tr .~I-. 
• 

- 5 - •~ 
S

10

• 5 S~ Ø~~S
• - - - S
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Theorem 3.4. Suppose (v~} is en ergodic stationary sequenc. with 6 ..

Then 
-

h a  t~~ f~ I, 1(U(s))ds — Un t~~ f~~1, ,(V(s))ds
0 ~0,Si t•. ° iO ,Zj

(IVo) h 1 p(W0 ~ u) dii a s .  for S £ 1
+
.

Th. results hers and in Section 5 also bold for f~~~tloas1s of several

processes such as for t 1 1 f(Z (s) U(s) ,V(s))ds. S 

-

4. )bdulo c C1.arin1 Processes Bsvin~ Uniform A.ymototic strlbutleq~
In this section vs ass that I is a module c clearing process

(i.e. — • c and ~~ — 0). £ special cue is a cisaring process in

which — c • Y(T ,T~~~J, ~n 
— 0 (for n~~ 0) and either T is continuous

or T ha. only unit 1~~ and c is an integer. We know from amerk 3.3

that the asymptotic distribution of I is

(4.1) p(0,z] • IT(z)/$T(c—) for z a t0,c).
S Our am, hers is to give some sufficient conditions on Y for p to be a

uniform distribution. -

For the special determt—4•tic case in which Y(t) — at for some a ) 0, it

S obviously follows that p is uniform. Thi. sight lead one to conjecture

(vitbput ~~~dng (4.1)) that . It Y is a stationary tendon measure, which

implies 11(t) - at, than p weuld be uniform. This , however, even under

the additional assi~~ tion that Y has lndepr 4r~t increments, is false (131.

S Our jor rssult her. (Theorem 4.3) asserts that, under sons minor conditions,

this eomj.cturs j~s indeed true if the s.s. lisit is taken with respect to the

S 

Fain probability of I retb*r tha. the usual probability. Theorem .3 1.

obteteed from the following Theorems 4.1 end 4.2.

lacking at(4.l) cu lee that it is the i4aonity of IT(s) rather than

that of 11(t) that yields a isiform p. Ibre apeaifieally , ~~~báve the

fohlemlng re ult. 5 -
S ~~S

- 
• •~~ : 4 ~3~ t i  -

S 11_i

• 
. 5 55 5 - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~~~l~~~S - ..—.,-----“ --—------— 5—- _5S5
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Theorem 4.1. 11 Y is a stationary randns measure such that (In) is

ergodic and EY(l) c ., then p is uniform on [O c) .

Ptoof. Since Y is stationary, then it is also semi-stationary over S~ -uc.

‘Then f rom P ~~siticn 2.3 and Theorem 3.1, vs know that p is given by (4.1) .

N~v the statio narity of I implies that

IT(O,x) — z 11(0,1) for each z ~ 0.

Also Y (z) • 0 a s .  for each x ~~~, 0, eince

~~~ — 1n14P. fl5..fl ’ 5J ~~~~~~~~~~~~~~~ -~~S;~~~~~ S

• I Y(O,z) — liz E1(O,x-n~~) • 0.

Prom these observations and (4.1) it follows that p is uniform on (O ,c).

A discrete analOg of Theorem 4.1 is as follows. S

5 -

Theors. 4 .2. Suppose Y(t) ’. sup(n~~, O : Z  £ t ) vhste Z~ ~ 
T~1 andn k—l

is a statio nary ergodic sequence of nomosgatiws random var iables with

O a Ill •, and c is an integer. Then p is uniform on the set (0,1, .., c—l).

Proof. Under the hypotheses

!T(x) .11
1~~11 • (x+l3 IT1 for x~~~O , S

where Cu) denotes the integer part of u. The rest of the proof follow.

as above.

for the next result vs ass~~~ that I is a stationary tendon measure.

With no lose in generality, we assuna that the underl ying probability specs

O is *1. the set of Radon measures on t~~~, and that S

• T (&4t ,w) . 1(4 g .,)

for each w a 0. We let P denote the Palm p*Obability msaaure of !. This is
- -r • a -

defiasd on thi s e t O . ( a c M : % a ( O ) O } b Y

• 1 4 11(051)dT(t) 1 fot A c  F. Q~~F, 
-

vberefis tbe a—fiaU Os Q, ass (33 , (51 or (10). The?isiaterpreted to

be the “cosditiss al distribut ion of I conditioned on the event that I has a

point of imcr’s.ss at O.” S

12



Theorem 4.3. Suppose I is a stationary randos aevre inch that

(Zn) is .rgedic and 11(1) a.. If 1(t) is a s .  cootimione, then for

each I a 8+
(4.2) ~

‘1 
~ 1

1
(Z(u))du • p(I} P a s .  where p is uniform on (O,c).

If I is a point process whose atone are unit messes and C is an integer,

then (4.2) holds where p is uniform on (0,1,.~ .,c-.1). S

Proof. If I is a stationary measure and 1(t) ii a s .  continua ,,., then from

(3 , p. 2181 and (15) vs know that Y is a stationary measure on the Palm

probability space (Q,P,P). Them (4.2) follows from Thastes 4.1. The

second assert ion follows similarly tics (3) s.d (13) and Theo~~m 4.2.

The assertion (4.2) with the Palm probability P, scene that I is uni-

formLy asymptotically distributed , conditioned on the event that I has a

point of increase at 0. The latter insures that the first cyCle of I

begins with a point of increase of I , 3ust as the subsequent cycle do

by the nature of clearing when a given level i~ attained. -

The above result is nicely illustrated by. the classical economic order

quantity (IOQ) inventory endsi (16, p. 8031, which is-widely used in

industry. This medel describes an inventory system in which an initial

quantity c is pl cM in inventory end as time passes the inventory declines

at a constant rate -a until it reach.. sara , at which tine another quantity

o is t~~~di.tely pieced in inventory. This cycle is repeated indefinitely.

The inventory level over time is givin -by

S 
Z(t) .c—X(t) for t~~ 0,

where I is our endulo c clearing proces. with 1(t) • at. Th. quantity c

(the IOQ) is given by c • iZaEJh, when the cost of ordering a qu tity z

is K + ha, and Ii is the coat 
- 
of holding ong unit of inventory per unit time.

This forasl a for c is based on the property that the average inventory level

over line is ./2, which follow. cisc. X , is uniformly fiyop toticahly distributed.

13 

~~~~~~~~~~~~~~~ 
S~~~~~4~) . Ss s  
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It appears that this Inventory model should .1* apply - the ‘ems” (oar y) 
S

is a stationary rend.. measure with 11(t) • at. We can - say (knowing

Theorem 4.3) that it does apply when d. nd occurs either continuously or

In unit j~~~s and when one starts viowing the process when a demand occurs.

We now re tur n to the case in *i~h I has stationary independent Increments.

We know that p is generally not uniform, but it La f or the special case

described ma folio. ’., which is from (8).

Pamsrk 44~ Suppose I La a module 1. clearing pro cess, without the assumption

that (x~
} is stationary. If I has stationary independent increments such that

1(0) — 0 a s .  and there is no rational nunber r for which all the Y(t) ’s are

a s .  integral meitipiss ef r , then I La uniformly asymptotically distributed.

Amother general result from (81 that applies to module c clearing (without

our etatbonarity a.s~~~tion) is as follow.:

.4J.t It cMre iaafunction 5~~from Z~to1~ sucb tbat *(z)+0LmplieS

x . 0 , and for s~~~~a~~, 0, S

S r C1’V$(t~ !~l~0 (Z(u))du — xc~~)dt ., 
S

a 0 •~~

then I is Lforily asymptotically distributed. - . - 
~~ 

Si 4 - - 5

S. Puncti assl Limit Lais and Convernan ce of S.quenc.s of Clesriof Processes

Vs sow present a functional centr al Ut~Lt 1w I a functional lw of

the iterated løgarithm for s..i—stationary cl.arbng processes. b r  this we

assuna that I is i clearing process that satisfies the following condition.:

Ci) (Zn) is a stationary ~0-uixiflg jiii ~c. (2. p. 166] with

(ii) IV~~c .. S

Vs also .ssuns that f is a Sorel function from K to I such that:

(iii) U~ 4 ., where . sup (1 f(z(u))du a t a (?~ , T1 1
)}. 

S

Le tm Ty0 - £ . a ~~’ 1 t 0 f(z(u))du S1Sd 
-

1 14 

-
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0
~n~~’ ~~~ 

f(Z (u))du

From Ci) and (ii) it fo1l~~~ that : ((Ti , T~ ): a ~ 0)

is a stationary ~5-mizing sequence with ); • 
1/2 

~ , 0,

and g(11
i12

1) c • for i,J • 1,2 (2 ,p. 1661. Furthermore, by (2 ,

Theorem 20.1], the following quantities exist

a~ ,
e g(y~Iy2

.i) + 
k—2 ~~~~~ + ~ K(Yk

tTl~
).

For th. following result we ass~~~ that 
-

nt
Zn(t) • a ‘ C I f(X(g))du — nAt)

0

Z~’(t) n~~
’2 

~~~~ 
— mat) for t ~~0.

Theorem 3.1. If conditions (L) — (iii) hold and a
~~ 

and 
~22 are positive,

(Z~ Zn’) + (a~~Yp 
~~

)
where (U1, V2) is a Weiner procSsa in D * I) such that (ii~(l), W

2(1))

has zero moan and covariance trix (ai j}. -

Proof. Thu follows from Corollary 5.2 in (12).

For the next result vs ass~~~ that
at

Z *(t).$ ( J - f(x(u))du-nM) fot t~~~0,
• a a

where 1~ - z~ ~~~~ i.og log a, and vs let K denote the set of absolutely

continuous funcatoesnaDsuch that z(0).-O d Iz’(t)2 4t- 41.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
is as.  relatively compact with set of limit point. (n(s ): ztI ) .

Proof. Let

50(t) ~~~ 
(/ ~~

3 f (*(~))du — LIt.~j) fa~ t ~ 0.

Prom Corollary 3 in (121, with obvious modifications, it follows abet

(Z~# • a~~~3) is a... relativsly compact with liait po*nts K.

Also by the ergodic theorem and (iii) we have

S 
i~~\ ~$~

‘
~n1’2) (n 1~\) . 0 a...

13

- 
~ 
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Thus the assertion follows by an applicat ion of Corollary 2.3 and

P~~~rk 2.4 in (12].

For our next result vs assome that I is a clear ing process each that
(xe) is stationary. We l.a ~~~~~ x(2) , . . .  be a sequence of similsr

clearing processes.

Theorem 3.3. If.. for any a1,...,~~.aa4k ~~~l, -

~~n) • 
~~“l

’ ’  1
%

)

then 1(n) , ~~
_ _ _ _  

(~) 0 SProof. It suffices to show that I • I a DE0,à), fov any I-continuity
point a , see (7) .  Purth ez ore by ~~~orsm 3.1 of (2) we need only show this

for nonrando. functions and 1. 70 this end let s be a continuity

point of I and pick s such that I ~ s. We can always write
1(n) (a) — t X~~~

(t—Tk)

since ~~~~~~ ~~~~~~~~~ have disjoint supports. Then

1(n) ~ 4n) 
~ ~~(n) on (0,.],

where o denotes the composition operator -and 8k~~~(t) - a - for t ~~~, 0.

clearly, • 8.~ uniformly on compact., where ~k (t) t -

ly the hypothesi. and (2, p. 143) vs ba-vs - 
S

~~a) 
~ ~~

(n) 
• z., 

o k on Df0,e). 
S 

- .

Since the latter limits (for 0 ~~ k ~ a) have disjoint supports ,

it follows by the continuity property of addition in D(0,s), see L 171, that

1(a) 

~ 
~~~ k I on D(0,s).- 

-

This completes the- proof. 
- S- :~ - S

~~~&t~L.L Suppose I and I~~ (a ~ 1) are modulo c clearing processes with

rs.ç tivs imput process.. Y sad . Suppose furthe r that

-

. 

S

16
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S ~~ where 1nl’~~~’ ~en are iM.pesdsnt random moasures on l~, as in [6 , p. 232],
I

such that ~~ X~ Y where Y is a Poisson process. Sy th, continuity of

inverses [17) we have I. Using the repre sentat ion of 
~ 

in the proo f

of Proposition 2.3 it follows that the hypothesis of Theorem 3.3 is sati sfied ,
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